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two resultant curves. In the case of the promoted 
states in eq 11 and Tables II and III one can, if one 
wishes, attribute the potential maxima described in 
earlier paragraphs to avoided crossings between 
repulsive and attractive LCAS potential curves. For 
example, for H2 one has a strongly repulsive LCAS 
curve for (ls'2p7r)g of eq 11 and a corresponding pre­
sumably moderately attractive curve for (ls-3d7r)g, 
and similarly for the analogous triplet H2 and the 
corresponding singlet and triplet He2 curves.40 Thus 
for H2 or He2, avoided crossings of the separate poten­
tial curves of the two LCAS states,36 which are re­
quired for the cases which correspond at small R to 
promoted Rydberg MO's, can be held responsible for 
the potential maxima in these cases.41 Here the 

(40) An interesting minor point, however, is that the (ls2ls2p<7-)u and 
probably the (ls2ls3dir)g Hes attractive curves are at first (at large R 
values) repulsive (c/. ref 4a), and become attractive only at smaller R 
values. This behavior can be correlated phenomenologically with the 
fact that the overlap integral S changes sign as R decreases in the cases 
of 5(2p<7a, 2p<7b) and S(3d7ra, 3d?rb); the MO's <ru2p and irg3d involve 
negative overlap and so are antibonding at large R but attain positive 
overlap at smaller R, with S=ImR = O. It is also of interest that the 
overlap for <rg3d has positive maxima both at large R values and (S = 
1) at R = 0, but is smaller and even becomes slightly negative between, 
according to unpublished calculations by Dr. S.-I. Kwun in this labora­
tory. 

(41) On the other hand, reference to Figure 1 of ref 3 for He2 might 
suggest that repulsive LCAS's such as (ls2ls2s)g and (ls2ls2pjr)„, taken 
alone, tend to go, as R decreases, into MO states with repulsive cores but 
unpromoted Rydberg MO's (l<rglo-u22s and lo-gl<r„23dir, respectively), 
whereas the corresponding attractive LCAS's (ls2ls2s)„ and (lssls2p?r)g 
definitely correlate with MO states with attractive cores and the same 

I n the investigation of reaction mechanisms, problems 
regarding the configurations of fairly large mole­

cules with rigid frameworks are often encountered. 
Electric moment data have proved to be helpful in the 
solution of these problems in many instances.1-7 For 

(1) H. Kwart and L. Kaplan, J. Am. Chem. Soc, 75, 3356 (1953); 
76, 4072(1954). 

(2) J. D. Roberts, F. O. Johnson, and R. A. Carboni, ibid., 76, 5692 
(1954). 

(3) M. T. Rogers and S. J. Cristol, ibid., 77, 764 (1955). 
(4) (a) H. Krieger, Suomen Kemistilehti, B31, 348 (1958); (b) ibid., 

B32, 109 (1959). 
(5) N. L. Allinger, J. Allinger, and N. A. LeBeI, J. Am. Chem. Soc, 

82,2926(1960). 

ionic components which need to be admixed into the 
LCAS wave functions as R decreases are being ignored, 
but (as was pointed out above) because of a lack of 
orthogonality of the ionic and covalent wave functions 
the presence or absence of these ionic admixings does 
not change the qualitative characteristics of the po­
tential curves. 

The discussion in this section has shown that, for 
states which are Rydberg states near Re, it is incorrect 
because of strong CM at large R values to think of the 
core and the Rydberg electron as following independent 
correlation curves as R -*• °°. However, there is no 
reason why these states need be thought of as ceasing to 
be Rydberg states at larger R values. Further, al­
though a T and n* value associated with a specific 
Rydberg MO lack meaning at large R values, an 
ionization energy can be defined at every R value. At 
intermediate R values, ionization involves a consider­
able internal rearrangement of structure which leaves 
the positive ion the same as if an electron had merely 
been removed from a nonbonding Rydberg MO, 
while as R -*• » , the ionization energy becomes equal to 
the T for the excited atom in an LCAS function; these 
relations correspond to the pseudo-correlation of 
section 4. 

unpromoted Rydberg MO's (l<rg
2l<ru2s and l«-g

2l<7-u2pir). There seems 
to be no theoretical reason for such correlations for the repulsive single 
LCAS * ' s , and the explanation given in the text appears much more 
satisfactory. 

simple molecules, they are often sufficient for immedi­
ate structural assignments, but as the molecular com­
plexity increases, it often becomes necessary to use 
geometrical models from which theoretical moments 
are calculated in order to determine which particular 
configurations are consistent with the experimentally 
determined moments. 

A systematic approach to the calculation of theoretical 
moments from assumed models for several bicyclic 

(6) R. Riemschneider and W. Wucherpfennig, Z. Naturforsch., 
17b, 725 (1962). 

(7) D. D. Tanner and T. S. Gilman, / . Am. Chem. Soc, 85, 2892 
(1963). 
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Figure 1. Coordinate system for rotating vector. 

molecules has been presented by Wilcox.8 This ap­
proach involves the use of vector algebra in the calcu­
lation of electric moments when the polar substituents 
are "fixed" groups, i.e., single atoms or groups of 
atoms whose symmetry axis coincides with the axis of 
rotation. For molecules containing "rotating" polar 
groups, i.e., groups for which the moment vector does 
not coincide with the axis of rotation, as well as fixed 
groups, it is necessary to modify the vector method in 
order to calculate theoretical moments. It is the pur­
pose of this paper to show how this can be done using 
as a foundation the approach described by Wilcox. 
The results to be obtained are applicable to molecular 
systems with rigid frameworks in which, at least to a 
first approximation, it is useful to assume free rotation or 
some particular conformation of the rotatable group. 

Components of a Rotating Vector. It is assumed at 
the outset that the geometry of the parent molecule is 
reasonably certain, and hence that one can calculate 
the rectangular coordinates of the atoms to which polar 
groups can be attached and the components of the unit 
vectors which describe the directions of the bonds 
at the various points of attachment, as illustrated by 
Wilcox.8 The parent molecule itself may have a 
measured electric moment and will have one or more 
polar groups bonded to it. For a rotating group, the 
moment vector will enclose an angle <j> with the bond 
vector about which it can rotate. 

The x, y, and z contributions of the fixed moments are 
readily calculated,8 but the contributions of the rotating 
moments must be expressed by equations which give the 
vector components for the z'th rotatable group in terms 
of 4>t, Bi (the angle of rotation), and the vector com­
ponents of the axis about which rotation occurs. 

The derivation of these equations is readily accom­
plished by reference to Figure 1, in which a represents 
the unit vector about which the vector b rotates, and 4> 
is the angle between a and b. These vectors start at the 
origin and terminate in the fixed point A and the moving 
point B. The motion of B describes a circle upon 

(8) C. F. Wilcox, Jr., J. Am. Chem. Soc, 82, 414 (1960). 

which some arbitrary fixed point D is chosen. This 
circle is perpendicular to a, and thus the length of b 
is 1/cos <j>. Two vectors, c and d, are directed from 
A to B and D, respectively; they are equal in magni­
tude, and the angle between them is the angle of rota­
tion 9. Since a is a unit vector, b2 = 1 + c2. With the 
coordinates of A, B, and D represented by (ax, ay, az), 
(bx, by, bi), and (dx, dy, dz), respectively, the following 
relations may be written. 

a b = axbx + ayby + azbz = ab cos <j> = 1 (1) 

c d = (bx - axXdx - ax) + (bv - a„)(rf„ - ay) + 
(A - Q1Xd1 - a,) = c2 cos 9 (2) 

Z>2 = bx* + V + ^ 2 = 1 + c2 (3) 

Equations 1, 2, and 3 are to be solved for bx, bv, and bz, 
the components of the rotating vector b. The coor­
dinates of D must therefore be expressed in terms of c 
and the coordinates of A in order to eliminate dx, 
dv, and dz from eq 2. This can be done readily by 
choosing the location of D at the lowest point on the 
circle and hence such that the normal from D to the 
x-y plane intersects the extension of the projection of a 
on this plane. It then follows from simple geometry 
that dx/ax = dv\ay = 1 + gjh, where h = (ax

2 + ay
2)I/j 

and g is the distance between the points at which the 
normals from A and D intersect the x-y plane. If 
f is defined as the angle between a and its projection on 
the x-y plane, it is also the angle between d and the 
normal from A; thus az = sin f = gjc, and h = cos f 
= (az — dz)/c. We use these relations to obtain 
dx — ax = caxaz/h; dy — av = cayazjh; and dz — az = 
— ch. Equation 2 can then be written, after rearrange­
ment and simplication, as 

axbx + avby + azbz — bz/az = (hc/az) cos 9 (4) 

The simultaneous solution of eq 1, 3, and 4 yields 

bx = ax + [axazc cos 9 ± ayc sin 9] I jh 

bv = ay + [avazc cos 9 T axc sin 9]\jh 

and 

bz — az — he cos 9 

For 9 increasing when c rotates in a clockwise direc­
tion as viewed from the origin, the signs in front of the 
second terms in the brackets are — and + , respectively. 
Thus, when these components of b are converted to 
unit vector components (indicated by primes) by 
dividing each by (1 + c2)1/2, which is the same as 
multiplying by cos 4>, there results, since c cos <j> = 
sin0 

b'x = ax cos <j> + [axaz sin <f> cos 9 — 

a-ysin 4> sin 9]\jh (5) 

b'y = ay cos <f> +[ayaz sin 4> cos 9 + 
ax sin 4> sin 0]1 jh (6) 

b'z = a% cos 4> — h sin <£ cos 9 (7) 

Resultant Moment. An expression for the resultant 
electric moment, n, of n rotating group moments can 
be obtained by combining the rotating vector com-
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ponents in the usual manner 

M2 = dtmib'i*y + (tmib'iyy + (tmjb'tf (8) 
> » > 

in which the b' terms are given by eq 5, 6, and 7, and mt 

is the scalar magnitude of the moment of the /th ro­
tating group. For free rotation, the mean-square 
resultant (M2) is obtained by integrating 

/*2lr 

1/2TT ix'dd (9) 
Jo 

for all of the independent 8's. There results 
M n 

<M2> = S ™>2 + 2 E mmjia^a^ + 

aiyUjy + a,«a;z) cos 0,- cos </>,- (10) 

For a molecule with only fixed polar groups (0 = 0°), 
the expression for the mean-square resultant is the same 
as eq 10 but, of course, with the two cosine factors 
replaced by unity.9 

For the general case in which there are both fixed 
and rotating groups, it is desirable to have an expression 
for the resultant in which the contributions of the 
fixed and rotating groups are given separately. There 
will be, however, one cross-term between them, and, 
because of this, it is convenient to symbolize the total 
x, y, and z contributions of the fixed vectors as mx, 
my, and mz, which are defined as 

Hmkakx, ^2mkaky, ^ A 
k k k 

respectively, where mk refers to the scalar magnitude of 
the feth fixed group moment and the ak values are the 
components of the vector describing the direction of the 
/cth group bond. The resultant of the fixed group 
moments will be symbolized by m; i.e., m2 = mx

i + 
my

2 + mz
2. For the sake of clarity, the indices i 

and/ are used to refer to rotating and k to fixed groups. 
The mean-square electric moment for a molecule with 
both fixed and n rotating polar groups then can be 
written as 

n n 

(M2) = m2 + Z ^ j 2 + 2Y1 mt{mxaix + myaiy + 
i i 

n 
In1Oi1) cos <f>i + 2 £ mimj{aixaix + 

free rotation about each of the valence bonds other than 
the terminal ones. The mode of derivation used here 
suffers in comparison with the simple elegance of 
Eyring's method, but yields expressions in a form which 
is more tractable to trie type of analysis and the kind of 
molecules treated in this paper. 

Internuclear Distances. There is often the question 
of whether free rotation is possible for a given molec­
ular configuration or whether it is hindered as a result 
of steric repulsions or of special attractions (e.g., 
hydrogen bonding) between the atoms in the rotatable 
polar group and some fixed atom in the molecule. It is 
therefore desirable to be able to calculate how close a 
protruding atom in the rotating group can come to a 
nearby atom. This can be done with the aid of the 
components of the rotating vector given in eq 5, 6, and 
7. When used for this purpose, the angle <j> in these 
equations becomes the angle (designated by 4>' to 
avoid confusion) between the axis of rotation and the 
line of length s drawn from the base of this axis (point 
O in Figure 1) to the nucleus of the protruding atom. 
If the coordinates of the nucleus at point O are repre­
sented by (x2, y2, Z2), the square of the internuclear 
distance S between the atom of interest in the rotating 
group and a nearby fixed nucleus can be written as 

S2 = (xi - x2 - sb'xy + (.pi - y2 - sb'yy + 

(Z1 - z2 - sb\y (12) 

in which X\, y\, and zx are the coordinates of the nearby 
nucleus;11 s is calculated from a knowledge of the 
pertinent valency angle and bond distances; and the b' 
terms are those given by eq 5, 6, and 7. 

Application of the condition for a minimum or 
maximum in S2 with respect to B yields two values 
of the angle of rotation 6'm, differing by 180°, which 
can be calculated from the equation 

tan 6' = 
axAx — ayAy 

azE - &z~ 
(13) 

Oiydjy + aizajz) cos <j>t cos <f>j (11) sm
2 = A2 + s2 

In situations in which it is desired to calculate the 
dipole moment for some particular orientation of the 
rotating vector, the value of 6 corresponding to this 
conformation may be substituted into eq 5, 6, and 7 
along with the other necessary data to obtain the com­
ponents of the group moment vector b ' . These com­
ponents may then be combined with those for any other 
polar groups in the usual manner to obtain the resultant 
moment of the molecule in the desired conformation. 
An example of this is given in a subsequent section. 

Equations 9 and 10 resemble that derived by Eyring10 

a number of years ago for molecules in which there is 

(9) It is perhaps worth noting that if the three b' terms are erroneously 
averaged for all 8 between 0 and 2TT before incorporation into eq 8, the 
result is identical with eq 10 except that the first term on the right comes 

out to be Sm,2 cos! <j>i. 

(10) H.'Eyring, Phys. Rev., 39, 746 (1932). 

in which Ax, Ay, and Az are JCI — X2, yx — y2, and Zi 
— z2, respectively; ax, ay, and az have previously been 
defined {e.g., eq 1); and E = axAx + ay Ay + azAz. By 
combining and rearranging eq 5, 6, 7, 12, and 13, one 
obtains the following expression for the maximum or 
minimum value of the square of the desired internuclear 
distance, Sm

2 

Is[E cos (j)' ± 

(A2 - E2)l/* sin <t>'] (14) 

in which A2 = (Ax)2 + (Ay)2 + (Az)2 and for which the 
minimum value obviously occurs when the sign in 
front of the last term is positive. 

Range of Moment Values. In a manner completely 
analogous to that described above, an expression 
similar to eq 13 can be derived for the values of 6m 

corresponding to maximum and minimum values of /J,2 

for a molecule with a single rotating polar group 

tan 6m = 
axmy — OyTnx 

azF mz 
(15) 

in which mx, my, and mz have the same meaning as in 
eq 11, and F — axmx + aymy + azmz. The two values 

(11) See ref 8 for a sample calculation of these coordinates. 
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of 8m calculated with eq 15 will not, in general, be the 
same as those of 6'm in eq 13. 

The maximum and minimum values of ,u2 for a mole­
cule with one rotating polar group and several fixed 
groups is then given by 

^ 2 = (M2) ± lmlm* - F2)''''1 sin 0 (16) 

in which {n2) is the free rotation value (see eq 17 below), 
mi is the magnitude of the rotating group moment, 
and the rest of the terms have been defined in preceding 
sections. 

The quantity F in eq 15 and 16 will be recognized as 
the scalar product of the unit vector a and the vector 
which describes the direction of the resultant of all the 
fixed groups within the molecule; i.e., F = m cos 
\f/, where ip is the angle between a and the resultant. 
Hence (m2 — F2)l/* = m sin \p. Thus we see that when 
the axis of rotation of the rotatable polar group is 
parallel to the direction of the resultant (\f/ = 0 or 180°), 
there is no difference between the maximum and min­
imum values of /u2, and the moment of the molecule is 
the same regardless of whether rotation occurs or 
whether the rotatable group assumes some particular 
conformation. On the other hand, when the axis of 
rotation is perpendicular to the direction of the result­
ant, the difference between the maximum and min­
imum dipole moments will be greatest. 

Sample Calculations. The use of some of the 
equations derived above will be illustrated for several 
molecules containing a single rotatable polar group, 
as well as one or more fixed groups. For such mole­
cules eq 11 reduces to 

<M2} = m2 + Wi2 + Im1F cos <f> (17) 

1. Let us first calculate the free rotation values of 
ju for two isomeric alcohols, exo- and encfo-norborneol. 
These are derivatives of norbornane (bicyclo[2.2.1]-
heptane) for which the necessary skeletal coordinates 
and unit vector components have been deduced by 
Wilcox812 and to which the OH groups are bonded, in 
the two possible configurations, to a carbon atom (des­
ignated as C2) in one of the two-carbon bridges in the 
molecule. The data needed here are the x, y, and z 
vector components of the exo and endo bonds at C2, 
which are (+0.349, +0.842, and +0.41I)13 and 
(+0.349, -0.115, and -0.930), respectively; these 
are the components of the axes of rotation of the C-O-H 
group moment for the two isomers. The dipole mo­
ments of the two isomers have recently been remeas-
ured14 with presumably greater accuracy than in the 
original investigation.4" The new results are 1.63 
and 1.66 D. for the exo and endo alcohols, respectively. 
The fact that these two results are identical within the 
limits of error and also in agreement with the moments 

(12) The structure of norbornane was derived by Wilcox from consid­
erations of minimum strain in the internal bond angles, assuming 
1.540 A as the length of all C-C bonds. The coordinates and angles he 
obtained agree quite well with those found by electron diffraction (V. 
Schomaker, et al., unpublished data kindly furnished by Dr. Saul 
Winstein). For example, the angle between the planes of the two-carbon 
bridges was assumed to be 109°; the electron diffraction data yield a 
value of 110°. The angles and nonbonded distances calculated from 
Wilcox's model are generally lower, by 2% or less, than the correspond­
ing electron diffraction values. 

(13) The z component is listed in ref 8 as 0.414 owing to a typo­
graphical error. 

(14) P. Hirsjarvi and H. Krieger, Suomen Kemistislehti, B37, 140 
(1964). 

reported for several cycloalkanols15 raises some in­
teresting points. First, recent studies indicate that the 
parent hydrocarbon itself has a small moment in the 
range of 0.1516 to 0.24 D.14 These results are of interest 
in that they represent the largest moment values re­
ported for a saturated hydrocarbon and suggest the 
possibility that internal angle strain causes changes in 
bond moments. Furthermore, if the effect is real, one 
would expect the moments of the two isomeric alcohols 
to be different. It is therefore pertinent to calculate 
the magnitude of the difference to be expected for the 
moments of the alcohols when the parent molecule is 
assumed to have a moment. In carrying out such a 
calculation, the question of the direction of this moment 
is also involved. It must be either upward or down­
ward along the symmetry axis of the molecule, which 
passes through the center of the one-carbon bridge and 
through the midpoint of the line joining the bridge­
head carbons. (This axis will be taken as having the 
direction of the z axis in Figure 1 and as having a 
positive direction from the midpoint up through the 
bridge.) Calculation of the root-mean-square (rms) 
values of JX with eq 17 gives some information relative 
to these points. 

In using this equation, we will take 0.20 D. as the 
moment of norbornane, i.e., m = mz - ±0.20 (since 
mx = my = 0). The values of F are therefore (+0.411)-
(±0.20) = ±0.082 and (-0.930)(±0.20) = =F0.186 
for the exo and endo alcohols, respectively; 1.6 D. 
and 63° are reasonable values for m\ and <£.7 For ms 

= +0.20, the rms moments of the exo and endo 
isomers come out to be 1.65 and 1.53 D., whereas the 
corresponding values for mz = —0.20 are 1.57 and 
1.69 D. Since the uncertainty in the experimental values 
(1.63 and 1.66 D.) is no less than 0.1 D., and since it is 
possible that the rotation of the O-H group is some­
what restricted in both isomers, it is clear that no 
conclusion can be drawn as to the direction of the 
moment of the hydrocarbon. By the same token, 
however, it is also clear that the experimental data are 
not inconsistent with the possibility that the hydro­
carbon itself has a moment of about 0.2 D. 

2. An example involving steric effects is provided by 
the molecule, exo-2-hydroxy-sy«-8-chlorodibenzobicy-
clo[3.2.1]octadiene,17 whose dipole moment has been 
measured and for which a reasonable set of coordinates 
and unit vector components have been worked out.7 

The following data given in ref 7 are needed in the 
calculations: (a) the vector components of the exo 
bond at C2 and of the syn bond at C8, which are 
(+0.530, +0.635, +0.562) and (0.000, +0.850, 
+0.527), respectively; and (b) the measured dipole 
moment of the parent hydrocarbon (0.97 D.), which is 
assumed to be directed along the negative z axis, i.e., 
to have components of (0,0, — 1). 

Using 2.1 D. as the C-Cl group moment,2 one cal­
culates the contributions of the fixed groups to be 
mx = 0, my = (2.1)(0.850) = 1.78, mz = (2.1)(0.527) -
0.97 = 0.14, and hence m2 = 3.19. The vector com-

(15) A. L. McClellan, "Tables of Experimental Dipole Moments," 
W. H. Freeman and Co., San Francisco, Calif., 1963, pp 147, 215, 305. 

(16) C. F. Wilcox, Jr., J. G. Zajacek, and M. F. Wilcox, J. Org. 
Chem., 30, 2621 (1965). These authors report 0.15 D. by direct meas­
urement; from the measured moments of various chloro derivatives 
they calculate that the moment of norbornane is essentially zco. 

(17) The syn configuration is taken to be that in which the substituent 
group is on the same side of the one-carbon bridge as Cj. 
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ponents (ax, ay, az) of the axis about which the hydroxyl 
group may rotate are those given for the exo bond at 
C2; thus F = (0.635)(1.78) + (0.562X0.14) = 1.21. 
With 1.6 D. and 63° for mi and <j> as before, the rms 
of the resultant is calculated with eq 17 as 

( W = [(3.19X1.6)« + 
2(1.6X1.21) cos 63]1/J = 2.74 D. 

The observed moment for this compound (2.50 D.)7 

is in rather good agreement with this theoretical value, 
from which one might be tempted to infer that the OH 
group is relatively free to rotate. 

There is a possibility, however, that the hydroxyl H 
might assume conformations in which it is either weakly 
hydrogen bonded to the syn Cl atom or repelled by it; 
hence it is of interest to calculate the minimum distance 
between these two atoms and the moments associated 
with this and the maximum distances. This can be 
done using the coordinates of C2 and C8 which have 
been calculated to be (1.35, 1.35, -0.742) and (0.00, 
0.00, +0.969).7 With 1.77 A as the C-Cl distance18 

and with the vector components of the syn bond at C8, 
the coordinates of the Cl atom (xi, y\, and z\ of eq 12) 
come out to be (0.00, 1.50, 1.90). The coordinates 
(*2, J2, z2) in eq 12 are those of C2; thus Ax = —1.35, 
Ay = 0.15, and Az = 2.64. By means of eq 16 and 
using 1.92 A for s and 28.9° for </>' (calculated assuming 
C-O and O-H bond distances of 1.43 and 0.96 A 
and an oxygen valency angle of 105 °18), one then ob­
tains a minimum internuclear separation of 2.07 A, 
which is small enough or perhaps even too small for a 
hydrogen bond since the sum of the van der Waals 
radii of H and Cl atoms is 3.0 A.18 

The value of the angle of rotation 6' corresponding to 
this minimum separation, calculated with eq 13, comes 
out to be either 156.5 or 336.5°. Since 6 is chosen to 
be zero when the angle between the vector b and the 
+ z axis is greatest, it is clear that the smaller angle is 
associated with the minimum separation when b 
points to the hydroxyl H atom. On the other hand, the 
C-O-H group moment vector is on the opposite side 
of the axis of rotation from the O-H bond vector; 
hence when b assumes the direction of the group 
moment, the value of 6 to be used in computing the 
components of b according to eq 5, 6, and 7 will be 
336.5° for the minimum and 156.5° for the maximum 
separation. When evaluated for 0 = 63° and for the 
the components of a describing the direction of the exo 
bond at C2, the components of b ' turn out to be 
(+0.809, +0.412, -0.420) and (-0.327, +0.164, 
+0.930) for the minimum and maximum separation 
conformations, respectively. Vectorial combination 
of these components with the contributions of the 
C-Cl bond at C8 and of the hydrocarbon itself yields 

(18) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell 
University Press, Ithaca, N. Y., 1960, pp 226, 229, 260, 453. 

resultant moments of 2.81 and 2.66 D.19 According 
to eq 16, the total range of /x values is from 1.93 to 
3.36 D. There will therefore be two conformations 
of the hydroxyl H atom for which the calculated 
moments will equal that of the experimentally de­
termined value of 2.50 D.; these are for the hydroxyl H 
being nearly at its minimum and maximum separations 
from the Cl atom. However, since the free rotation 
value is 2.74 D. and since the uncertainties in the 
calculated and observed moments are both about 0.1 
D., it is clear that no definite conclusion can be drawn 
as to whether rotation is free or whether the rotatable 
group assumes some particular conformation. 

3. An example of a molecule containing several 
rotatable groups is furnished by 1,3,5-trimethoxy-
benzene, whose moment is 1.8 D.20 If the molecule is 
placed in a coordinate system so that the origin is at the 
center of the benzene ring and the y axis passes through 
Ci, the components of a for the three rotation axes are 
(0, 1, 0), ( W 3 , - 1 A , 0), and ( - V . V 3 , - 1 A , 0); 
these axes coincide with the three C-O bond vectors 
directed from Ci, C3, and C5, respectively. Incorpora­
tion of these components into eq 10 leads to 1.85 D. 
for the rms value of n when the CH3-O bond moment 
( = m,- = ra,) is taken to be 1.14 D.21 and <f>, the oxygen 
valency angle, is 110°.21 

The good agreement between the calculated and the 
observed moments might lead one to infer that the 
methoxy groups are freely rotating. It would be un­
wise to conclude this, however, as the following cal­
culation shows. If, instead of free rotation, the mole­
cule were constrained to assume only those conforma­
tions in which the methyl groups are coplanar with the 
benzene ring, the calculated moment comes out to be 
essentially the same as the free rotation value. Of the 
eight coplanar conformers, two have zero moments and 
the other six have moments of 2.14 D. If all eight 
conformations are equally probable, the rms value of n 
is 1.86 D., which is to be compared with the free rotation 
value of 1.85 D.22 

It can be concluded from the illustrations given above 
that dipole moment data may be of use in ruling out the 
possibility of essentially free rotation of groups in 
molecules containing polar substituents, but not in 
providing evidence that it does exist. 

(19) The angle between the C-Cl bond vector and b ' would appear by 
inspection and indeed can be calculated to be greater for the conformer 
in which the H-Cl distance is a minimum. This would suggest that the 
moment of this conformer should be less than that of its opposite; 
actually it is greater. Hence, it should be recognized that erroneous 
conclusions can be drawn, even regarding which resultant is larger, 
when making superficial estimates of the resultant of several vectors in 
three-dimensional frameworks. 

(20) J. W. Williams, Physik. Z., 29, 683 (1928). 
(21) C. P. Smyth, "Dielectric Behavior and Structure," McGraw-

Hill Book Co., Inc., New York, N. Y., 1955, p 301. 
(22) The agreement between the moment calculated for free rotation 

and that calculated for the planar conformations holds only for a valency 
angle of 110°. 
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